Deep Dive 2 Deep Learning
387 subscribers
23 photos
4 videos
333 links
Канал про глубокое машинное обучение: кейсы, новости, открытия и факапы из мира нейросетей и не только
Download Telegram
😜Что такое LLM и как работает AL: Deep Learning в NLP
Сегодня большие языковые модели (LLM, large language models) активно используются в задачах обработки естественного языка (NLP). LLM работают по двухэтапной схеме: предварительная подготовка и точная настройка. Первый этап использует большое количество немаркированных данных для создания предварительно обученных весов. Далее на этапе тонкой настройки эти веса загружаются и обучаются размеченным данным из последующих задач. LLM позволяет достичь хороших результатов даже с небольшим набором размеченных данных, сокращая время обучения. Но в реальности разметка даже небольшого датасета может стоить дорого. А когда речь идет о многоклассовой классификации, задача маркирования еще больше усложняется. Сократить количество таких аннотаций поможет активное обучение (Active Learning, AL).
Основная идея AL заключается в том, что алгоритм может достичь лучшей производительности с меньшим количеством размеченных образцов, что сокращает усилия по разметке и время обучения. AL полезно, когда разметка данных стоит дорого или их трудно собрать, тогда как немаркированные данные есть в большом количестве. Это характерно для большинства реальных приложений, например, речевые данные и пр.
Одним из самых популярных подходов к AL является выборка на основе пула (Pool-base sampling), который предполагает наличие небольшой начальный набор размеченных данных для обучения начального классификатора, и большой набор немаркированных данных. Первоначальный классификатор выбирает образцы из немаркированного набора, используя показатель информативности. Затем отобранные образцы маркируются автоматически или вручную и добавляются к размеченным данным. Новая модель обучается с использованием нового размеченного набора. Процесс повторяется до тех пор, пока не будет достигнута желаемая производительность.
Метрика информативности или стратегия запроса помогает выбрать образцы, которые стоит маркировать. Есть несколько стратегий запросов в зависимости от данных и задачи. Например, можно использовать выборку неопределенности (Uncertainty sampling) – эвристику с вероятностными классификаторами, чтобы выбрать наиболее неопределенные выборки. Высокая неопределенность указывает на границу принятия решения, уточнение которой приведет к обучению лучшего классификатора.
https://towardsdatascience.com/transformers-meet-active-learning-less-data-better-performance-4cf931517ff6
💸Финансовая DL-система обучения с подкреплением
FinRL
- это DL-платформа с открытым исходным кодом, которая помогает создать конвейер разработки торговых стратегий с использованием глубокого обучения с подкреплением (Reinforcement Learning, RL). В обучении с подкреплением есть три основных компонента: состояние, действие и вознаграждение. Агент RL наблюдает за пространством состояний, а затем придумывает действие, чтобы максимизировать общее вознаграждение в будущем. Агент учится, постоянно взаимодействуя с окружающей средой методом проб и ошибок, принимая последовательные решения в условиях неопределенности и достигая баланса между обучением и работой на реальных данных. https://github.com/AI4Finance-Foundation/FinRL
Дополнительно улучшить решение на основе FinRL можно, подключив следующие DL-библиотеки:
RLlib обеспечивает высокую масштабируемость и унифицированный API для множества приложений. RLlib изначально поддерживает TensorFlow, TensorFlow Eager и PyTorch, но большинство его внутренних компонентов не зависят от фреймворка. https://docs.ray.io/en/latest/rllib.html
легковесный проект ElegantRL - более стабильный, чем Stable Baselines 3 и с поддержкой до 8 графических процессоров. ElegantRL реализует DL-алгоритмы с подкреплением без использования моделей: DDPG, TD3, SAC, PPO, PPO (GAE) для непрерывных задач, а также DQN, DoubleDQN, D3QN для дискретных задач. https://github.com/AI4Finance-Foundation/ElegantRL
Смотрите подробный пример практического использования всех этих DLR-инструментов: https://medium.com/analytics-vidhya/a-hitchhikers-guide-to-finrl-a-deep-reinforcement-learning-framework-for-quantitative-finance-e624c508f763
☀️Глубокое обучение со скоростью света
Одной из главных проблем глубокого обучения является стоимость вычислительных процессов. Глубокие нейросети потребляют множество энергии для обучения, поэтому DS-специалисты ищут способы сократить эти затраты. Для этого компания Lightmatter предложила стратегию вычислений с использованием фотонов, а не электронов. В конце 2021 года Lightmatter планирует выпустить световую микросхему ускорителя нейросети, доработав ранее созданный прототип чипа Mars. Вообще сама идея световых, а не электронных вычислений не нова: в микросхемах Lightmatter основным компонентом является интерферометр Маха-Цендера, изобретенный в конце 19 века. Однако, упаковать их в миниатюрный чип было невозможно до недавнего времени. Благодаря развитию интегрированной фотоники инженеры Lightmatter смогли уменьшить интерферометры до такой степени, чтобы разместить их в миниатюрный чип и использовать для выполнения матричных умножений в вычислениях нейросетей.
Обработка аналоговых сигналов, переносимых светом, снижает затраты на электроэнергию и увеличивает скорость вычислений, но пока проигрывает цифровым системам в точности. Поэтому Lightmatter и другие стартапы, работающие в этом направлении (Fathom Computing, LightIntelligence, LightOn, Luminous и Optalysis) работают над этой проблемой. Например, Luminous планирует применить оптические вычисления для объяснения принципов работы человеческого мозга и применения их к искусственным нейросетям, ожидая получить работающую систему не позже 2025 года.
https://spectrum.ieee.org/deep-learning-at-the-speed-of-light
🤦🏼‍♀️Защита частной жизни vs успехи глубокого обучения: размывание лиц в ImageNet
Бум нейросетевых алгоритмов распознавания образов, возникший в 2012 году, обусловлен не только развитием аппаратного обеспечения, но накопленному множеству обучающих датасетам, самым известным из которых является ImageNet. Однако в 2021 году исследователи, управляющие этим набором данных, решили размыть входящие в него снимки лиц реальных людей.
Сегодня ImageNet содержит 1,5 миллиона промаркированных изображений, которые часто используются для измерения производительности ML-алгоритмов или для обучения моделей компьютерного зрения. Размытие лиц затронуло 243 198 изображений, при этом другие объекты на фотографиях не были затронуты. Размытие лиц было реализовано с помощью ИИ-сервиса Amazon Rekognition и сотрудников Mechanical Turk. Примечательно, что размытие лиц не повлияло на производительность алгоритмов распознавания объектов, обученных на ImageNet.
Это не первая попытка модификации знаменитой библиотеки изображений: в декабре 2019 года команда ImageNet удалила предвзятые и уничижительные термины, используемые для маркирования фотографий. Однако, размытие лиц не исключает возможности нарушения приватности: DL-алгоритмы могут научиться искать людей и по размытым фотографиям. А DL-система, обученный на наборе данных с размытыми лицами, может быть сбита с толку внешним видом людей в реальном мире. Поэтому при принятии таких решений, касающихся использования глобальных датасетов, следует учитывать все риски и возможные негативные последствия.
https://www.wired.com/story/researchers-blur-faces-launched-thousand-algorithms/
🌸Прогнозирование взаимосвязей между генами и фенотипами с DL
Одной из актуальных задач современной системной биологии является вывод фенотипических результатов на основе геномных особенностей. Исследователи применили эволюционное DL-моделирование для прогнозирования фенотипов для анализа ответов внутривидовых и межвидовых транскриптомов для нескольких сортов кукурузы. Возможность использовать геномные данные для прогнозирования, как организм отреагирует на изменения в питании, токсинах и воздействии патогенов даст пользу для улучшения сельскохозяйственных культур, прогнозирования болезней, эпидемиологии и других биомедицинских приложений. С учетом огромного количества данных, для этой задачи ученые использовали алгоритмы глубокого обучения, разработав эволюционный ML-конвейер для идентификации важных генов.
Подробную статью с графическими иллюстрациями, формулами и таблицами читайте здесь: https://www.nature.com/articles/s41467-021-25893-w
🤜🏻🏃Восстановление после падения: новая DL-система с подкреплением
Команда исследователей из Чжэцзянского и Эдинбургского университетов научили робота вставать после падения, случившегося из-за физической атаки. Они разработали архитектуру обучения с восемью экспертными алгоритмами, которые помогают роботу-собаке выработать сложное поведение. Для каждого алгоритма создана глубокая нейросеть, обучающая виртуальную модель робота бежать или вставать, если он упал на спину. Это типичная система обучения с подкреплением: когда робот пробовал что-то, приближающее его к цели, он получал цифровое вознаграждение.
После обучения экспертных алгоритмов исследователи объединили их в единую сеть, чтобы они могли действовать вместе. Например, когда робот падает и ему необходимо восстановиться, система обнаруживает это движение и запускает алгоритм балансировки. По мере того как виртуальный робот перемещается по моделируемой среде, DL-сеть изменяет влияние отдельных экспертных алгоритмов, в зависимости от того, какие навыки необходимы в конкретный момент.
После моделирования в виртуальной среде исследователи перенесли робота в реальный мир. Эксперименты показали успешность предложенного подхода: робот учился ходить, падая и самостоятельно поднимаясь, как это делают люди в младенческом возрасте.
https://www.wired.com/story/watch-a-robot-dog-learn-how-to-deftly-fend-off-a-human/
Я продолжаю серию митапов про Data Science в геосервисах, логистике, приложениях Smart City и т.д.
28 октября в 18:00 МСК состоится 3-я онлайн встреча Citymobil Data Meetup!

💣 Программа – пушка!

🚕 Ксения Мензорова Data Science в Surge Pricing Ситимобил
«Атака тестов на свичбэк»
Расскажет какими статистическими методами можно проверить switchback-тест. А ещё подскажет, как правильно выбрать подход, позволяющий бизнесу быстро принимать решения.

🚕 Екатерина Колпакова Руководитель DWH Ситимобил
«Сказ про то как мы в Ситимобил DWH строим»
Подробно расскажет о подходе к построению сложных систем, совмещения Data Vault и Data Lake, а также будет рассмотрено, как же в компании устроены потоки данных.

🛴 Николай Рядчиков Senior ML Specialist Самокат
«Прогнозирование времени доставки заказа»
Будут рассмотрены необходимость детальной структуры местности для точного прогноза заказа, временные факторы прогноза, очередность заказа в порядке выполнения курьером как важнейший фактор прогноза, методология проведения экспериментов для проверки качества прогноза.

После доклада спикеры ответят на вопросы слушателей. Регистрация для бесплатного участия в первом комментарии)
https://citymobil.timepad.ru/event/1813232/
🕸Глубокое обучение для кибербезопасности: кейс Adobe
Команда Security Intelligence в Adobe применяет методы DL, чтобы лучше обнаруживать обфускацию команд, повышая общую безопасность. Обфускация команд - это популярный метод кибербезопасности, который намеренно затрудняет чтение части стандартного кода, продолжая выполнять его. Традиционные методы обнаружения вредоносных программ обычно основаны на правилах и не быстро адаптируются к новым типам вредоносных программ и обфускации. Обнаружить их поможет глубокое обучение, которое создает динамические ML-модели, способные адаптироваться к новым типам информации.
Есть несколько способов обнаружить обфускацию. Например, методы статистики, применяемой к соотношениям известных/неизвестных слов (токенов) и простым языковым моделям, основанным на n-граммах. Но при достаточном количестве данных глубокое обучение превосходит традиционные методы обработки естественного языка в классических основных задачах. Поэтому глубокое обучение может предоставить надежное решение для обнаружения запутанных команд, обфускация которых может принимать множество различных форм. Deep Learning позволяет создавать более динамичные модели, которые лучше работают с ранее невидимыми данными, чем традиционные методы ML.
Команда разработчиков Adobe представляет собой глубокую сверточную нейросеть (CNN) на уровне символов. Тестирование этой DL-модели на несбалансированном датасете показало отличные результаты, близкие к 100% успешности.
Исходный код и подробное объяснение доступны здесь: https://pypi.org/project/obfuscation-detection/
🎂SaLinA – легковесная DL-библиотека для последовательного обучения агентов и обучения с подкреплением от Facebook Research
SaLinA основана на популярном DL-фреймворке PyTorch и использует Hydra для настройки экспериментов, а также Gym для алгоритмов обучения с подкреплением. Исходный код SaLinA не превышает 300 строк, но она позволяет реализовать последовательные процессы принятия решения, создавая сложные агенты из более простых с предопределенными контейнерами. А оболочка NRemoteAgent может выполнить любой агент в нескольких процессах, ускоряя вычисления. Благодаря тому, что алгоритмы выполняются на CPU или графических процессорах, процессы развертывания и масштабирования становятся проще.
Стоит помнить, что SaLinA – это не просто очередной RL-фреймворк: она ориентирована на последовательное принятие решений в целом, а только для этого частного случая. Помимо обучения с подкреплением, SaLinA можно использовать для контролируемого ML, моделей внимания, многоагентного обучения, рекомендательных систем и других вариантов использования. Хотя SaLinA – это всего лишь небольшой слой поверх PyTorch, который очень просто использовать, этот инструмент очень мощный.
Библиотека распространяется под лицензией MIT И доступна для свободного скачивания с Github. https://github.com/facebookresearch/salina
😎Безопасное распознавание лиц: датасет с синтетическими лицами от Microsoft
После того, как DS-исследователи, управляющие популярным набором данных ImageNet, решили размыть входящие в него снимки лиц реальных людей, корпорация Microsoft создала датасет синтетических изображений лиц под названием «Fake It Till You Make It». Этот набор данных получен с помощью DL-нейросети, генерирующей параметрическую 3D-модель лица, к которой случайным образом применяются текстуры кожи и волос. В результате составлен датасет из 100000 изображений лиц с разрешением 512 x 512 пикселей, включая 70 стандартных аннотаций лицевых ориентиров и попиксельные аннотации семантических классов. Разработчики ожидают, что этот набор данных поможет ML-специалистам организовать предварительное обучение алгоритмов распознавания лиц перед запуском в production.
https://microsoft.github.io/FaceSynthetics/
https://github.com/microsoft/FaceSynthetics
🌦Не только биомедицина: DL-прогноз погоды от DeepMind
Дочерняя компания Google AI, ставшая всемирно известной после успеха AlphaFold с предсказанием структуры белков, недавно представила новый DL-проект: генеративно-состязательную сеть Deep Generative Model of Rain (DGMR) для краткосрочных прогнозов погоды. По сравнению с другими ML-аналогами и физическим моделированием, эта модель дает самые высокие показатели точности. DGMR представляет собой генеративно-состязательную нейросеть, обученную на данных с радиолокационных измерений о формировании и движении облаков. GAN-сеть генерирует новые образцы данных, похожие на обучающий датасет, полученный с радаров, создавая синтетические снимки радиолокации, которые продолжают последовательность реальных измерений.
https://deepmind.com/blog/article/nowcasting
https://www.nature.com/articles/s41586-021-03854-z
📝DL для исправления опечаток и других ошибок: Context IQ в Microsoft 365
2 ноября 2021 года Microsoft объявила об улучшении текстового редактора и других офисных приложений с помощью ИИ. Благодаря DL-решению Context IQ опечатки будут исправляться сами, а найти нужный документ и поделиться им с коллегами станет еще проще. Это лишь немногие функции, которые станут доступны пользователям в 2022 году, который наступит уже через пару месяцев.
https://techcommunity.microsoft.com/t5/microsoft-365-blog/microsoft-editor-is-now-superpowered-with-context-iq-to-help-you/ba-p/2897180
🔥MuJoCo теперь open-cource: как DeepMind купила и открыла исходный код самого популярного робосимулятора
MuJoCo (Multi-Joint Dynamics with Contact) – физический симулятор, разработанный Roboti LLC, активно используется для моделирования реальных ситуаций у робототехников. Контактная модель симулятора точно и эффективно фиксирует характерные особенности различных объектов. Как и другие симуляторы твердого тела, он избегает мелких деталей деформаций в месте контакта и работает быстрее, чем в реальном времени. Однако, в отличие от других симуляторов, MuJoCo использует выпуклый принцип Гаусса, обеспечивая четко определенную обратную динамику. Модель предоставляет множество параметров, которые можно настраивать для аппроксимации широкого диапазона явлений контакта.
В октябре 2021 года дочерняя компания Google AI, DeepMind приобрела MuJoCo и открыла его исходный код. Скоро планируется выпустить MuJoCo в виде бесплатной предварительно скомпилированной библиотеки.
https://deepmind.com/blog/announcements/mujoco
https://github.com/deepmind/mujoco
😜Распознавание речи на редких языках: новый проект MIT
Исследователи из Массачусетского технологического института предлагают удалить ненужные части общей, но сложной модели распознавания речи, а затем внести в нее незначительные изменение, чтобы модель могла распознавать определенный язык. После того, как крупная модель будет уменьшена, ее обучение становится дешевле и быстрее. Это поможет внедрить системы автоматического распознавания речи в страны и регионы, где люди говорят на редких языках.
Ученые модернизировали Wave2vec 2.0 – популярную ML-модель, которая учится распознавать разговорный язык после тренировки на больших объемах немаркированных данных. Изначально эта нейросеть имеет около 300 миллионов отдельных соединений и требует огромное количество вычислительных мощностей. На первом этапе из предварительно обученной Wave2vec 2.0 удаляются ненужные соединения, далее подсеть корректируется для определенного языка, а затем снова сокращается. На этом втором этапе удаленные соединения могут расти, если они важны для конкретного языка. Поэтому модель нужно настраивать только один раз, а не за несколько итераций, что значительно снижает количество потребляемых вычислительных мощностей.
По сравнению с другими методами распознавания речи, предложенный подход особенно эффективен на небольших датасетах и может создать одну малую сеть, которую можно точно настроить для 10 языков одновременно. Это дополнительно сокращает расходы и время на обучение языковых моделей.
https://news.mit.edu/2021/speech-recognition-uncommon-languages-1104
🌏🪐🌚Как DL открывает новые экзопланеты и ищет незаконные свалки
Большинство известных сегодня экзопланет обнаружено транзитным методом, основанным на мини-затмениях при прохождении планеты перед звездой. Наблюдаемое уменьшение светимости позволяет сделать вывод о существовании планеты и оценить ее диаметр после периодического подтверждения наблюдений. Однако, во многих планетных системах взаимодействия между планетами изменяют эту периодичность и делают невозможным их обнаружение. Поэтому группа ученых из университетов Швейцарии вместе с компанией Disaitek применили ИИ для обработки изображений, научив ML-модель предсказывать эффект взаимодействия между планетами, чтобы найти экзопланеты.
Нейросеть определяет для каждого пикселя изображения того объекта, который он представляет, чтобы выявить для каждого измерения светимости звезды, наблюдается ли затмение планеты. Далее ML-модель принимает решение, сравнивая все доступные наблюдения этой звезды с диапазоном конфигураций, наблюдаемых во время ее обучения. Так с помощью ML обнаружены две экзопланеты - Kepler-1705b и Kepler-1705c, определены их радиусы, масса, сделаны выводы о плотности и составе. DL проанализировало множество результатов численного моделирования, производящего терабайты данных.
Хотя метод доказал свою эффективность для астрономических наблюдений, он может также использоваться и для земных нужд для наблюдений за нашей планетой и окружающей средой, в частности, для решения экологических проблем, например, обнаружения незаконных свалок.
https://phys.org/news/2021-10-exoplanets-artificial-intelligence.html
📕📗📘RGB-Stacking от DeepMind: новый эталон для роботизированных манипуляций на базе CV
DeepMind открыла исходный код среды моделирования для RL-обучения роботов-манипуляторов. В этой среде агент управляет манипулятором робота с параллельным захватом над корзиной, которая содержит три объекта разных цветов - красный, зеленый и синий, отсюда и название RGB (Red, Green, Blue). Задача агента - поставить красный объект поверх синего в течение 20 секунд, когда зеленый объект служит препятствием и отвлекает. Агент управляет роботом с помощью четырехмерного декартового контроллера, с 3-мя контролируемыми степенями свободы (x, y, z) и вращением вокруг оси z. Моделирование представляет собой среду MuJoCo, созданную с использованием структуры Modular Manipulation (MoMa).
Суть подхода в том, чтобы перевести основанную на состоянии политику моделирования с помощью стандартного RL-алгоритма с последующей интерактивной дистилляцией в политику на базе компьютерного зрения с использованием рандомизированной версии среды предметной области. Добавлено автономное обучение с подкреплением на основе симулированных и реальных данных.
https://deepmind.com/blog/article/stacking-our-way-to-more-general-robots
https://github.com/deepmind/rgb_stacking
🏃‍♀️🏃Ансамбли DL-моделей быстрее, чем вы думаете: новости от Google AI
При построении DL-модели для нового ML-приложения исследователи часто начинают с существующих сетевых архитектур типа ResNets или EfficientNets. Если точность исходной модели недостаточно высока, более крупная модель может быть альтернативой, но не лучшим решением для поставленной задачи. А более высокой производительности можно добиться, разработав новую модель, оптимизированную для этой задачи. Но это обычно очень трудозатратно.
Решить проблему помогут ансамбли и каскады ML-моделей, которые достаточно просты сами по себе и создают новые модели из существующих и объединения их результатов. Ансамбли выполняют несколько моделей параллельно, а затем объединяют выходные данные, чтобы сделать окончательный прогноз. Каскады - это подмножество ансамблей, которые выполняют собранные модели последовательно и объединяют решения, как только прогноз имеет достаточно высокую достоверность. Для простых входных данных каскады используют меньше вычислений, но для более сложных может потребоваться большее количество моделей, что приведет к росту затрат на вычисления. По сравнению с одной моделью, ансамбли могут обеспечить повышенную точность, если прогнозы собранных моделей отличаются друг от друга. Например, большинство изображений в ImageNet легко классифицируются современными моделями распознавания изображений, но есть много изображений, для которых прогнозы различаются между моделями и которые больше всего выиграют от ансамбля. Тестирование показало, что ансамблевые и каскадные модели обладают высокой эффективностью и точностью по сравнению с современными моделями из стандартных архитектурных семейств.
https://ai.googleblog.com/2021/11/model-ensembles-are-faster-than-you.html
🙌🏻Ловкость рук и никакого мошенничества: DL для роботов-манипуляторов
Ученые из MIT создали масштабную систему, которая может переориентировать более 2000 различных объектов с помощью руки робота. Эта способность манипулировать чем угодно, от легкой чашки до тяжелого инструмента, поможет роботу быстро подбирать и размещать объекты определенным образом и в нужном месте. Это пригодится в логистике и производстве, например, упаковка предметов в слоты для комплектования. Команда разработчиков смоделировала антропоморфную руку с 24 степенями свободы и продемонстрировала жизнеспособность этой ML-системы в настоящего робота.
Исследователи использовали безмодельный DL-алгоритм обучения с подкреплением, когда система вычисляет полезные функции на основе взаимодействия с окружающей средой и метод обучения с учителем. Сеть «учителей» обучается на модельной информации об объекте и роботе. Чтобы гарантировать, что роботы могут работать вне симуляции, знания «учителя» превращаются в наблюдения из реального мира с фото и видеокамер о положениях объекта и суставов робота. Также применялась учебную программу по гравитации, где робот сначала тренирует навыки в условиях невесомости, а затем медленно адаптирует контроллер к нормальным условиям гравитации. Так всего один контроллер в качестве мозга робота может переориентировать большое количество объектов, которые он никогда раньше не видел и не знал ничего об их форме. Так множество маленьких предметов круглой формы (яблоки, теннисные мячи, шарики) имели почти 100% успеха при переориентации вверх и вниз, а для более сложных предметов (ложка, отвертка, ножницы), точность манипулирования приближаясь к 30%.
https://news.mit.edu/2021/dexterous-robotic-hands-manipulate-thousands-objects-1112
🤖Как заставить робота решать: новое исследование от Google AI
Несмотря на прогресс в обучении роботов, им до сих пор сложно выбрать наиболее подходящее действие при попытке имитировать точное или сложное поведение. Чтобы побудить роботов быть более решительными, исследователи часто используют дискретное пространство действий, которое заставляет робота выбирать вариант A или вариант B, не колеблясь между вариантами. Например, дискретность была ключевым элементом архитектуры Transporter Networks и используется в обучении игровых агентов: AlphaGo, AlphaStar и бот Dota OpenAI. Но дискретизация имеет свои ограничения - для роботов, которые работают в пространственно-непрерывном реальном мире, есть как минимум два недостатка дискретизации: ограничивает точность и запускает проклятие размерности, увеличивая требования к памяти. Поэтому в области CV недавний прогресс был обеспечен непрерывными, а не дискретными представлениями.
Чтобы разработать политики принятия решений без недостатков дискретизации, исследователи Google AI реализовали open-source проект с открытым исходным кодом Implicit Behavioral Cloning. Implicit BC представляет собой новый простой подход к имитационному обучению и был представлен на CoRL 2021. По сути, подход - это тип клонирования поведения, который, возможно, является для роботов самым простым способом освоить новые навыки на демонстрациях. При клонировании поведения агент учится имитировать поведение эксперта с помощью стандартного обучения с учителем. Традиционно клонирование поведения включает обучение явной нейронной сети, которая принимает наблюдения и выводит действия экспертов. Ключевая идея Implicit BC состоит в том, чтобы вместо этого обучить нейронную сеть выполнять как наблюдения, так и действия, и выводить одно число, низкое для действий эксперта и высокое для действий не эксперта (внизу справа), превращая поведенческое клонирование в проблема энергетического моделирования. После обучения политика Implicit BC генерирует действия, находя входные данные действия с наименьшей оценкой для данного наблюдения.
Implicit BC достигает хороших результатов как в моделируемых тестовых задачах, так и в реальных роботизированных задачах, требующих точного и решительного поведения. Это включает в себя достижение самых современных результатов (SOTA) в задачах, выполняемых человеком-экспертом из недавнего эталонного теста нашей команды для автономного обучения с подкреплением, D4RL. В шести из семи из этих задач Implicit BC превосходит лучший предыдущий метод для автономного RL - Консервативное Q Learning. Интересно, что Implicit BC достигает этих результатов, не требуя никакой информации о вознаграждении, то есть он может использовать относительно простое обучение с учителем, а не более сложное обучение с подкреплением.
https://ai.googleblog.com/2021/11/decisiveness-in-imitation-learning-for.html
https://github.com/google-research/ibc